In vivo anticancer evaluation of the hyperthermic efficacy of anti-human epidermal growth factor receptor-targeted PEG-based nanocarrier containing magnetic nanoparticles

نویسندگان

  • Giovanni Baldi
  • Costanza Ravagli
  • Filippo Mazzantini
  • George Loudos
  • Jaume Adan
  • Marc Masa
  • Dimitrios Psimadas
  • Eirini A Fragogeorgi
  • Erica Locatelli
  • Claudia Innocenti
  • Claudio Sangregorio
  • Mauro Comes Franchini
چکیده

Polymeric nanoparticles with targeting moieties containing magnetic nanoparticles as theranostic agents have considerable potential for the treatment of cancer. Here we report the chemical synthesis and characterization of a poly(D,L-lactide-co-glycolide)-b-poly(ethylene glycol)-based nanocarrier containing iron oxide nanoparticles and human epithelial growth factor receptor on the outer shell. The nanocarrier was also radiolabeled with (99m)Tc and tested as a theranostic nanomedicine, ie, it was investigated for both its diagnostic ability in vivo and its therapeutic hyperthermic effects in a standard A431 human tumor cell line. Following radiolabeling with (99m)Tc, the biodistribution and therapeutic hyperthermic effects of the nanosystem were studied noninvasively in vivo in tumor-bearing mice. A substantial decrease in tumor size correlated with an increase in both nanoparticle concentration and local temperature was achieved, confirming the possibility of using this multifunctional nanosystem as a therapeutic tool for epidermoid carcinoma.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and cytotoxicity evaluation of electrospun PVA magnetic nanofibers containing doxorubicin as targeted nanocarrier for drug delivery

Objective(s): The purpose of this study was preparation and evaluation of PVA-Fe3O4 nanofibers as nanocarrier of doxorubicin (DOX) by measuring their drug release together with their in vitro cytotoxicity toward cancer cells at different pH values. Methods: Fe3O4 nanoparticles were synthesized by coprecipitation...

متن کامل

Synthesizing and Characterizing Functionalized Short Multiwall Carbon Nanotubes with Folate, Magnetite and Polyethylene Glycol as Multitargeted Nanocarrier of Anti-cancer Drugs

Multifunctional nanomaterials showed graet advantages in drug delivery. Folic acid (FA) binding protein, a glycosyl phosphatidyl inositol anchored cell surface receptor for folate, is overexpressed in several human tumors, whereas it is highly restricted in normal tissues. Therefore, in this study, FA, polyethylene glycol (PEG), and Fe3O4 nanoparticles multifunctionalized short multiwall carbon...

متن کامل

Synthesizing and Characterizing Functionalized Short Multiwall Carbon Nanotubes with Folate, Magnetite and Polyethylene Glycol as Multitargeted Nanocarrier of Anti-cancer Drugs

Multifunctional nanomaterials showed graet advantages in drug delivery. Folic acid (FA) binding protein, a glycosyl phosphatidyl inositol anchored cell surface receptor for folate, is overexpressed in several human tumors, whereas it is highly restricted in normal tissues. Therefore, in this study, FA, polyethylene glycol (PEG), and Fe3O4 nanoparticles multifunctionalized short multiwall carbon...

متن کامل

Design and performance investigation of electrospun PVA nanofibers containing core-shell nanostructures for anticancer drug delivery

Objective: The purpose of this work was design and performance investigation of a nanocarrier based on magnetic nanofibers containing core-shell nanostructuresfor anticancerdrug delivery of daunorubicin (DAN) by measuring their drug release at different pH values. Methods: Fe3O4 nanoparticles and Fe3O4@SiO2core-shell nanostructures were synthesized through coprecipitation and Stöber methodresp...

متن کامل

EGFR-targeted delivery of DOX-loaded Fe3O4@ polydopamine multifunctional nanocomposites for MRI and antitumor chemo-photothermal therapy

Multifunctional nanocomposites that have multiple therapeutic functions together with real-time imaging capabilities have attracted intensive concerns in the diagnosis and treatment of cancer. This study developed epidermal growth factor receptor (EGFR) antibody-directed polydopamine-coated Fe3O4 nanoparticles (Fe3O4@PDA NPs) for magnetic resonance imaging and antitumor chemo-photothermal thera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014